PHYSICAL CHEMISTRY

Total Marks: 69

Max. Time: 69 min.

Topic: Thermodynamics & Thermochemistry

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.14	(3 marks, 3 min.)	[42, 42]
Multiple choice objective ('-1' negative marking) Q.15 to Q.17	(4 marks, 4 min.)	[12, 12]
Assertion and Reason (no negative marking) Q.18 to Q.22	(3 marks, 3 min.)	[15, 15]

- 1. An isolated system is that system in which:
 - (A) there is exchange of energy with the surroundings.
 - (B) there is exchange of mass and energy with the surroundings.
 - (C) There is no exchange of mass and energy with the surroundings.
 - (D) There is exchange of mass but not energy with surroundings.
- 2. As per the First Law of thermodynamics, which of the following statement would be appropriate:
 - (A) Energy of the system remains constant.
 - (B) Energy of the surroundings remains constant.
 - (C) Entropy of the universe is always increasing in an irreversible process.
 - (D) Energy of the universe remains constant.
- 3. One mole of an ideal monoatomic gas is caused to go through the cycle shown in figure. Then the change in the internal energy of gas from a to b and b to c is respectively:

- (A) $\frac{9P_{o}V_{o}}{2}$, 6 RT_o (B) $\frac{9P_{o}V_{o}}{2}$, 10 RT_o (C) $\frac{15P_{o}V_{o}}{2}$, 6 RT_o (D) $\frac{15P_{o}V_{o}}{2}$, 10 RT_o
- An ideal gas is taken around the cycle ABCA as shown in P-V diagram. The net work done during the cycle 4. is equal to:

- (A) 7 P₁V₁
- (B) -5 P₁V₁
- (C) 5 P₁V₁
- (D) $-7 P_1 V_1$
- 1 mole of SO₂ gas at 27° C is expanded in reversible adiabatic condition to make volume 8 times. Final 5. temperature and work done respectively are: (take $2^{1.2} = 2.3$)
 - (A) 150 K, 900 cal
- (B) 150 K, 750 cal
- (C) 130.5 K, 847.5 cal (D) 130.5 K, 508.5 cal

7. 8.	external pressure of or (A) T + $\frac{2}{3 \times 0.0821}$ One mole of an ideal g	the atm under adiabatic content (B) T - $\frac{2}{3 \times 0.0821}$	erature T and volume 1L onditions. Then final tempton (C) $\frac{T}{2^{5/3-1}}$	_			
8.	One mole of an ideal g	3 × 3.332 1	(C) $\frac{T}{2^{5/3-1}}$	(D) $\frac{T}{2^{5/3+1}}$			
8.		$\left(C_{1} = \frac{3}{2}R\right)$ at 200 K a		2			
	atm against a constan	One mole of an ideal gas $\left(C_V = \frac{3}{2}R\right)$ at 300 K and 5 atm is expanded adiabatically to a final pressure of 2					
	(A) 228 K	t pressure of 2 atm. Fina (B) 240 K	I temperature of the gas i (C) 248.5 K	s : (D) 200 K			
9.	The enthalpy of forma	tion of ammonia = 46.0 k	J mol⁻¹. The enthalpy cha	ange for following reaction is :			
	$2NH_3 \longrightarrow N_2 + 3H_2$						
	(A) -92.0 kJ	(B) 46.0 kJ	(C) -46.0 kJ	(D) 92.0 kJ			
10.	The standard enthalpy of formation of B_2O_3 is eq. (A) ΔH°_{C} (B(s)) (C) $2\Delta H^{\circ}_{C}$ (B(s))		equal to : (B) 1/2 ΔH° _C (B(s)) (D) 3/2 ΔH° _C (B(s))				
11.	Calculate the average	O–H bond energy in H ₂ C	with the help of following	g data :			
	(1) $H_2O_{(\ell)} \longrightarrow H_2O_{(g)}$; $\Delta H = + 40.5 \text{ KJ mol}^{-1}$ (2) $2H_{(g)} \longrightarrow H_{2(g)}$; $\Delta H = - 435.0 \text{ KJ mol}^{-1}$ (3) $O_{2(g)} \longrightarrow 2O_{(g)}$; $\Delta H = + 489.5 \text{ KJ mol}^{-1}$						
	(4) $2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O(\ell)$; $\Delta H = -571.5 \text{ KJ mol}^{-1}$						
	1-7		(C) 462.5 KJ mol ⁻¹	(D) 925 KJ mol ⁻¹			
12.	For the equations: C(diamond) + $2H_2(g)$ - Select the correct option (A) $\Delta H_1 = \Delta H_2$ (C) $\Delta H_1 < \Delta H_2$		and $C(g) + 4H(g) \rightarrow 0$ (B) $\Delta H_1 > \Delta H_2$ (D) Nothing can be said	· -			
13.	Enthalpy of polymerisation of ethylene, as represented by the reaction, $nCH_2=CH_2\longrightarrow (-CH_2-CH_2-)_n$ is -100 kJ per mole of ethylene. Given that bond enthalpy of C=C bond is 600 kJ mol ⁻¹ . Enthalpy of C=C bond (in kJ mol) will be :						
	(A) 500	(B) 350	(C) 400	(D) indeterminate			
14.		-	ed to expand reversibly a of gas during expansion ((C) 2.5 R In 10	nd adiabatically to ten times of its (in JK ⁻¹ mol ⁻¹) : (D) None of these			
15.*	If a process is both end (A) $\Delta S_{sys} > 0$	dothermic and spontaneo (B) $\Delta S_{sys} < 0$	ous, then : (C) $\Delta S_{univ} > 0$	(D) ΔS _{univ} < 0			
16.*	The enthalpy change for a given reaction at 298 K is – x J mol ⁻¹ (x being positive). If the reaction occurs spontaneously at 298 K, the entropy change at that temperature: (A) can be negative but numerically larger than x/298. (B) can be negative but numerically smaller than x/298. (C) cannot be negative. (D) can be positive.						

CLICK HERE >>

- The value of $\Delta H_{transition}$ of C (graphite) \longrightarrow C (diamond) is 1.9 kJ/mol at 25°C entropy of graphite is higher 17.* than entropy of diamond. This implies that:
 - (A) C (diamond) is more thermodynamically stable than C (graphite) at 25°C.
 - (B) C (graphite) is more thermodynamically stable than C (diamond) at 25°C.
 - (C) Diamond will provide more heat on complete combustion at 25°C.
 - (D) $\Delta G_{transition}$ of C (diamond) \longrightarrow C (graphite) is -ve.

Assertion / Reason

DIRECTIONS:

The following questions consist of two statements one labelled ASSERTION and the another labelled REASON . Select the correct answers to these questions from the codes given below :

- (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not correct explanation of Assertion.
- (C) Assertion is true but Reason is false.
- (D) Assertion is false but Reason is true.
- 18. **Assertion**: The increases in internal energy (ΔE) for the vaporisation of one mole of water at 1 atm and 373 K is zero.

Reason : For all isothermal processes on perfect gases, $\Delta E = 0$.

19. **Assertion**: The enthalpy of formation of $H_2O(\ell)$ is greater than that of $H_2O(g)$ in magnitude.

Reason: Enthalpy change is negative for the condensation reaction:

$$H_2O(g) \longrightarrow H_2O(\ell)$$

20. **Assertion :** Enthalpy of neutralisation of HCIO₄ with NaOH is same as that of HCI with NaOH.

Reason : Both HCl and HClO₄ are strong acids.

21. Assertion: Decrease of free energy during a process under constant temperature and pressure provides a criteria of its spontaneity.

Reason: A spontaneous change must have positive sign of ΔS_{system} .

22. The standard molar enthalpies of formation of cyclohexane (I) and benzene (I) at 25° C are -156 and + 49 KJ mol⁻¹ respectively. The standard enthalpy of hydrogenation of cyclohexene (I) at 25° is –119 kJ mol⁻¹. Use these data to estimate the resonance energy of benzene.

Answer Key

DPP No. #59

1.	(C)	2.	(D)	3.	(A)

7. (B) (A)

> 12. (B) 13. 17. (BCD)

(B) 18. (D) 4. (C) 9.

(A)

19.

(A) 10. (C)

(D) 14. (D) 15.

(AC) 20. (A)

21. (C) 22. -152 kJ mole-1

6.

11.

16.

(B)

(C)

(BD)

Hints & Solutions

DPP No. # 59

- 2. First law of thermodynamics is the law of conservation of energy.
- 4. Work done by the gas in the cyclic process = Area bounded (ABCA) = 5P,V,
- 6. From I law of thermodynamics ΔE = Q + W where Q = 0 for adiabatic process.
- 7. $\Delta U = W$ $nCv(T_2 - T) = -P \times (V_2 - V_1)$ $\frac{3}{2} R(T_2 - T) = -1$ \Rightarrow \therefore $T_2 = T - \frac{2}{3 \times 0.0821}$
- 8. q = 0 $\therefore \Delta U = W$ $\Rightarrow nC_{v,m} (T_2 T_1) = -P_{ext} \left[\frac{nRT_2}{P_2} \frac{nRT_1}{P_1} \right]$ $\therefore C_{v,m} [T_2 T_1] = P_{ext} \cdot R \left[\frac{T_1}{P_1} \frac{T_2}{P_2} \right] \Rightarrow \frac{3}{2} R [T_2 300] = 2 \times R \left[\frac{300}{5} \frac{T_2}{2} \right] \Rightarrow T_2 = 228 K$
- When one mole of NH₃ is formed from its constituent elements the enthalpy change = 46.0 kJ
 Therefore when one mole of NH₃ decompose to give its constituent elements enthalpy change = 46.0 kJ
 ⇒ When 2 mole NH₃ decompose, enthalpy change = 2 × 46 = 92.0 kJ
- 10. Combustion reaction of solid boron

$$\mathsf{B}(\mathsf{s}) + \frac{3}{4}\mathsf{O}_2(\mathsf{g}) \longrightarrow \frac{1}{2}\mathsf{B}_2\mathsf{O}_3$$

$$\Delta H_{r}^{\circ} = \Delta H_{c}^{\circ} = \frac{1}{2} \Delta H_{f}^{\circ} (B_{2}O_{3}, s) - \Delta H_{f}^{\circ} (B, s) - \frac{3}{4} \Delta H_{f}^{\circ} (O_{2}, g)$$

 $\Delta H_{\!_f}{}^\circ$ of element in stable state of aggregation is assumed to be zero.

$$\Delta H^{\circ}_{c} = \frac{1}{2} \Delta H^{\circ}_{f} (B_{2}O_{3})$$

- 11. (1) $H_2O(\ell) \longrightarrow H_2O(g)$ $\Delta H = 40.6 \text{ KJ/mole}$
 - (2) $2H(g) \longrightarrow H(g)$ $\Delta H = -435.0 \text{ KJ/mole}$
 - (3) $O_2(g) \longrightarrow 2 O_2(g)$ $\Delta H = -49836 \text{ KJ/mole}$
 - (4) $2H_2(g) + O_2(g) \longrightarrow H_2O(\ell)$ $\Delta H = -571.6 \text{ KJ/mole}$ $\downarrow \qquad \qquad \downarrow$ $4H(g) + 2O(g) \longrightarrow$

$$2H_{2}(g) + O_{2}(g) \xrightarrow{2} 2H_{2}O(\ell) \Delta H = -571.6 \text{ KJ/mole}$$

$$\Delta H^{\circ}_{r} = 2\Delta H^{\circ}_{F}(H_{2}O, \ell) - 2\Delta H^{\circ}_{F}\{H_{2},(g)\} - \Delta H^{\circ}_{F}(O_{2}, g)$$

$$\downarrow \qquad \qquad \qquad \qquad Zero$$

$$-571.6 = 2\Delta H^{\circ}_{F}(H_{2}O, \ell) \text{ so} \qquad \Delta H^{\circ}_{F}(H_{2}O, \ell) = -285.5$$

(2) Calculation of ΔH°_ε(H_oO, g)

$$H_2O(\ell) \longrightarrow H_2O(g)$$
 $\Delta H = 40.6$
 $\Delta H_r = \Delta H_F^\circ (H_2O, g) - \Delta H^\circ (H_2O, \ell)$
 $\Delta H_F^\circ (H_2O, g) = \Delta H_F^\circ (H_2O, \ell) + \Delta H_r$
 $= -285.8 + 40 = -245.8$

(3)
$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g)$$
 $\Delta H = -245.8$
 $\downarrow \qquad \qquad \downarrow$
 $2H(g) + O(g)$

$$\Delta \text{Hr} = \in_{\text{H-H}} + \frac{1}{2} \in_{\text{O-O}} - 2 \in_{\text{O-H}} \quad \Rightarrow \quad -245.8 = +435 + \frac{1}{2} (489.6) - 2 \times \in_{\text{O-H}}$$

$$2 \in_{\text{O-H}} = 435 + 244.8 + 245.8 \quad \Rightarrow \quad 2 \in_{\text{O-H}} = 925.6$$

$$\in_{\text{O-H}} = 462.5$$

13.
$$nCH_2 = CH_2 \longrightarrow (-CH_2 - CH_2 -)_n \quad \Delta H = -100 \text{ KJ/mole}$$

$$n [C = C] + n[C - H]4 - n [C - H] 4 - n[C - C] \times 2 = -100$$

$$n[C = C] - 2n[C - C] = -100 \quad \Rightarrow \quad [C = C] - 2[C - C] = -100$$

$$\Rightarrow \quad +600 - 2[C - C] = -100 \Rightarrow \quad -2[C - C] = -700 \text{ KJ/mole} \quad \Rightarrow \quad (C - C) = -350$$

- 14. Process is Reversible and adiabatic (Q = 0) So, Δ S = 0
- 15.* Process is endothermic i.e., $\Delta H = + \text{ ve}$ and process is also spontaneous i.e., $\Delta G = \text{ ve}$ Hence, from Gibbs-Helmholtz equation $\Delta G = \Delta H T.\Delta S$ ΔS must be positive so that ΔG may be negative.
- 16.* It is because of the fact that for spontaneity, the value of $\Delta G = (\Delta H T \Delta S)$ should be < 0. If ΔH is ve, the value of T ΔS shall have to be less than ΔH or the value of ΔS has to be less than $\frac{\Delta H}{T}$ i.e., $\frac{x}{298}$.
- 18. The assertion that the increase in internal energy for vaporisation of one mole of water at 1 atm and 373 K is zero is true because for all isothermal process change in internal energy is zero.

19.
$$H_2(g) + \frac{1}{2}O_2 \longrightarrow H_2O(g)$$
; $\Delta H_f = -\epsilon_1$,(i) $H_2O(g) \longrightarrow H_2O(l)$; $\Delta H_f = -\epsilon_2$,(ii) and (i) and (ii). $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$. ; $\Delta H = -(\epsilon_1 + \epsilon_2)$.

- 20. Heat of neutralisation for strong acid and strong base combination is constant is equal to -13.7 Kcal or -57.1 KJ.
- 22. Enthalpy of formation of 3 carbon-carbon double bonds $= \Delta H_F (\bigcirc) \Delta H_F (\bigcirc)$ = -156 (+49) kJ = -205 kJ.

 \bigcirc + H₂ \longrightarrow \bigcirc \triangle H = 119 kJ Given that,

Theoretical enthalpy of formation of 3 double bonds in benzene ring $= 3 \times (-119) \text{ kJ} = -357 \text{ kJ}.$

∴ resonance energy of benzene = - 357 - (-205) kJ = -152 kJ mole⁻¹ ®

